Skip to contents
library(aemetools)
library(sf)
library(terra)
library(tmap)
tmap_mode("view")
tmap_options(basemap.server = "OpenTopoMap")

Global

Download global point meteorological data

One of the most widely used meteorological datasets for hydrodynamic modelling is the ERA5-Land reanalysis dataset. This dataset has a spatial resolution of ~9 km and provides hourly meteorological data for the period 1950-present. It also includes a wide range of meteorological variables that are required to drive hydrological and hydrodynamic models.

However, there are known issues with the ERA5-Land dataset, such as the underestimation of precipitation and wind speed in some regions. Therefore, it is recommended to compare the ERA5-Land data with local observations before using it for hydrodynamic modelling.

Please see instructions on setting up a Copernicus (CDS) account and linking it with the ecmwfr package in the ecmwfr vignette.

key <- "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
user <- "person@email.com"

# Add the key and user to the environment
Sys.setenv(CDS_KEY = key)
Sys.setenv(CDS_USER = user)

# Set the key for connecting to Copernicus Data Store (CDS)
ecmwfr::wf_set_key(key = Sys.getenv("CDS_KEY"),
                   user = Sys.getenv("CDS_USER"))

Download ERA5 data

Point timeseries data

The get_era5_isimip_point() function can be used to download ERA5 meteorological data for a specific point location. This uses the ISIMIP3a dataset which is a subset of the ERA5 dataset and is accessed via the ISIMIP API. This function requires the latitude, longitude, years, and variables to be specified. It can be used for any point location globally. However, this dataset only covers 1900-2021.

Example: Download meterological data for 2021 for Lake Toba, Indonesia

However, it is very quick and easy to download meteorological data for a specific point location. We will choose the latitude and longitude of Lake Toba, Indonesia, and download the air temperature and precipitation for the year 2021.

lon <- 98.67591
lat <- 2.637047
years <- 2021
vars <- c("MET_tmpair", "MET_pprain")

met <- get_era5_isimip_point(lon, lat, years, vars)
#> INFO [2025-02-28 03:44:21] job submitted
#> INFO [2025-02-28 03:44:21] downloading
#> INFO [2025-02-28 03:44:22] extracting
summary(met)
#>       Date                 tas              pr          
#>  Min.   :2021-01-01   Min.   :19.08   Min.   : 0.06125  
#>  1st Qu.:2021-04-02   1st Qu.:21.29   1st Qu.: 1.88049  
#>  Median :2021-07-02   Median :21.79   Median : 4.86638  
#>  Mean   :2021-07-02   Mean   :21.77   Mean   : 7.66636  
#>  3rd Qu.:2021-10-01   3rd Qu.:22.30   3rd Qu.:10.38196  
#>  Max.   :2021-12-31   Max.   :23.67   Max.   :68.75736

GRIB files

The download_era5_grib() function can be used to download ERA5 meteorological data from the Copernicus Data Store (CDS). This function requires the latitude, longitude, variable, year, and month to be specified. The data will be saved as a GRIB file in the specified path.

Example: Download 2m air temperature GRIB files for January 2024 for Lake Toba, Indonesia

We will choose the latitude and longitude of Toba, Indonesia, and download the 2m temperature for January 2024.

Download shapefile for Lake Toba, Indonesia

We will download a shapefile for Lake Toba, Indonesia, and plot the location using the osmdata and tmap packages.

For more details on using osmdata, you can visit the osmdata website.

library(osmdata)
#> Data (c) OpenStreetMap contributors, ODbL 1.0. https://www.openstreetmap.org/copyright
osm_data <- opq(bbox = "Sumatra, Indonesia") |> 
  add_osm_feature(key = "name:en", value = "Lake Toba", value_exact = FALSE) |> 
  osmdata_sf()

# Extract lake polygon
toba <- osm_data$osm_multipolygons |> 
  st_make_valid()
toba
#> Simple feature collection with 1 feature and 16 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 98.51838 ymin: 2.318597 xmax: 99.15221 ymax: 2.903105
#> Geodetic CRS:  WGS 84
#>        osm_id       name
#> 306034 306034 Danau Toba
#>                                                                           description
#> 306034 Lake and supervolcano caldera, last erupting about 67,500 to 75,500 years ago.
#>        ele                                       image name:de   name:en
#> 306034 900 https://photos.app.goo.gl/gM8jdz9oRP7zfybU7 Tobasee Lake Toba
#>         name:fr name:hu    name:ru   name:tr natural         type water
#> 306034 Lac Toba Toba-tó озеро Тоба Toba Gölü   water multipolygon  lake
#>        wikidata     wikipedia                       geometry
#> 306034  Q183360 id:Danau Toba POLYGON ((98.56084 2.769449...

Plot the location of Lake Toba.

tm_shape(toba) +
  tm_fill(fill = "blue", fill_alpha = 0.5) +
  tm_borders(col = "black") 

Alternatively, you can manually input the latitude and longitude of the location you are interested in.

lat <- 2.637047
lon <- 98.67591

# View location
coords <- data.frame(lat = lat, lon = lon) |> 
  st_as_sf(coords = c("lon", "lat"), crs = 4326)

tm_shape(coords) +
  tm_dots(fill = "red", size = 2) 

Now we can download the ERA5 data for the 2m temperature for January 2024. We can use the download_era5_grib() function to download the data using the shapefile we downloaded earlier or the latitude and longitude of the location.

year <- 2024
month <- 1
variable <- "2m_temperature"
path <- "data/test"
site <- "toba"

files <- download_era5_grib(shape = toba, year = year, month = month,
                            variable = variable, path = path, site = site,
                            user = user)

The function will return the path to the downloaded file.

files
#> [1] "data/test/reanalysis-era5-land_2m_temperature_hourly_2024_1_toba.grib"

Files are in GRIB (GRIdded Binary) format, which is a format commonly used in meteorology to store gridded data. You can read more about these files on the ECMWF website: GRIB.

The most important thing is not to be afraid of them. You can easily read them using the terra::rast() function.

r <- rast(files[1])
r
#> class       : SpatRaster 
#> dimensions  : 8, 8, 744  (nrow, ncol, nlyr)
#> resolution  : 0.1, 0.1  (x, y)
#> extent      : 98.45, 99.25, 2.25, 3.05  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat Coordinate System imported from GRIB file 
#> source      : reanalysis-era5-land_2m_temperature_hourly_2024_1_toba.grib 
#> names       : SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], ... 
#> unit        :           C,           C,           C,           C,           C,           C, ... 
#> time        : 2024-01-01 to 2024-01-31 23:00:00 UTC

Hmmmmmmm… Ok, maybe these files are not that easy to read/understand. We can also plot them in leaflet using the terra::plet() function.

plet(r)

As you can see it gives us a spatial grid of the 2m temperature for the month of January 2024. However it is at a 1-hour temporal resolution. We can use the read_grib_point() function to extract the timeseries data at a specific point location.

df <- read_grib_point(file = files, shape = toba)
head(df)
#>              DateTime    value units
#> 1 2024-01-01 00:00:00 293.0246     C
#> 2 2024-01-01 01:00:00 293.3111     C
#> 3 2024-01-01 02:00:00 293.9233     C
#> 4 2024-01-01 03:00:00 294.9492     C
#> 5 2024-01-01 04:00:00 296.1868     C
#> 6 2024-01-01 05:00:00 297.0911     C
#>                                                 variable short_name
#> 1 SFC (Ground or water surface); 2 metre temperature [C]         2T
#> 2 SFC (Ground or water surface); 2 metre temperature [C]         2T
#> 3 SFC (Ground or water surface); 2 metre temperature [C]         2T
#> 4 SFC (Ground or water surface); 2 metre temperature [C]         2T
#> 5 SFC (Ground or water surface); 2 metre temperature [C]         2T
#> 6 SFC (Ground or water surface); 2 metre temperature [C]         2T

New Zealand

Download NZ point meteorological data

Currently, there are ERA5-Land data (~9km grid spacing) archived for New Zealand (166.5/-46.6/178.6/-34.5) for the time period 1980-2023 with the main meteorological variables (air temperature, dewpoint temperature, wind u-vector at 10m, wind v-vector at 10m, total precipitation, snowfall, surface level pressure, downwelling shortwave radiation, downwelling longwave radiation) required to drive hydrological and hydrodynamic models. This can be easily downloaded using the example below.

First we will define our point location for New Zealand. We will use the latitude and longitude of Lake Rotorua, Bay of Plenty, New Zealand.

lon <- 176.2717
lat <- -38.079

Plot the location.

coords <- data.frame(lat = lat, lon = lon) |> 
  st_as_sf(coords = c("lon", "lat"), crs = 4326)

tm_shape(coords) +
  tm_dots(fill = "red", size = 2) 

Now we can download the ERA5 data for the air temperature and precipitation for the years 2000-2001. We can use the get_era5_land_point_nz() function to download the data.

The function will return a dataframe with the daily meteorological data for the specified years.


vars <- c("MET_tmpair", "MET_pprain")

met <- get_era5_land_point_nz(lat = lat, lon = lon, years = 2000:2001,
                              vars = vars)
summary(met)
#>       Date              MET_tmpair       MET_pprain     
#>  Min.   :2000-01-01   Min.   : 3.567   Min.   : 0.0000  
#>  1st Qu.:2000-07-01   1st Qu.: 9.178   1st Qu.: 0.1464  
#>  Median :2000-12-31   Median :12.053   Median : 1.5939  
#>  Mean   :2000-12-31   Mean   :11.967   Mean   : 6.3207  
#>  3rd Qu.:2001-07-01   3rd Qu.:14.835   3rd Qu.: 6.9353  
#>  Max.   :2001-12-31   Max.   :19.837   Max.   :89.4112

We can plot the timeseries data using the ggplot2 package.


library(ggplot2)
library(tidyr)
#> 
#> Attaching package: 'tidyr'
#> The following object is masked from 'package:terra':
#> 
#>     extract

met |> 
  pivot_longer(cols = c(MET_tmpair, MET_pprain)) |> 
  ggplot(aes(x = Date, y = value)) +
  geom_line() +
  facet_wrap(~name, scales = "free_y", ncol = 1) +
  theme_bw()

Timeseries plot of air temperature and precipitation.

By default, it will download all available variables. Currently available variables are air temperature (MET_tmpair), dew point temperature (MET_tmpdew), wind u-component (MET_wnduvu), wind v-component (MET_wnduvv), precipitation (MET_pprain), snowfall (MET_ppsnow), surface level pressure (MET_prsttn) and shortwave radiation (MET_radswd).

To download all available variables for Lake Rotorua for the years 2022-2023, you can use the following code:

met <- get_era5_land_point_nz(lat = lat, lon = lon, years = 2022:2023)
summary(met)
#>       Date              MET_tmpair       MET_tmpdew       MET_wnduvu     
#>  Min.   :2022-01-01   Min.   : 4.725   Min.   :-2.106   Min.   :-5.5620  
#>  1st Qu.:2022-07-02   1st Qu.: 9.901   1st Qu.: 6.845   1st Qu.:-1.3116  
#>  Median :2022-12-31   Median :12.940   Median : 9.723   Median : 0.1794  
#>  Mean   :2022-12-31   Mean   :12.899   Mean   : 9.755   Mean   : 0.2274  
#>  3rd Qu.:2023-07-01   3rd Qu.:15.961   3rd Qu.:12.792   3rd Qu.: 1.8215  
#>  Max.   :2023-12-31   Max.   :21.905   Max.   :21.368   Max.   : 5.7673  
#>    MET_wnduvv         MET_pprain         MET_ppsnow          MET_prsttn   
#>  Min.   :-4.82260   Min.   :  0.0000   Min.   :0.000e+00   Min.   :93756  
#>  1st Qu.:-1.09642   1st Qu.:  0.1583   1st Qu.:0.000e+00   1st Qu.:96870  
#>  Median : 0.18915   Median :  1.6596   Median :0.000e+00   Median :97352  
#>  Mean   : 0.07119   Mean   :  8.1192   Mean   :1.521e-16   Mean   :97314  
#>  3rd Qu.: 1.25388   3rd Qu.: 10.5166   3rd Qu.:0.000e+00   3rd Qu.:97879  
#>  Max.   : 5.16590   Max.   :106.9180   Max.   :3.470e-15   Max.   :99473  
#>    MET_radswd     
#>  Min.   :  8.615  
#>  1st Qu.: 93.090  
#>  Median :150.059  
#>  Mean   :164.618  
#>  3rd Qu.:229.137  
#>  Max.   :386.774

Derive other meteorological variables

The downloaded ERA5 data can be converted to other meteorological variables using the AEME::expand_met() function. Which will calculate the following variables:

  • MET_tmpdew: Dew point temperature (°C)
  • MET_wndspd: Wind speed (m/s)
  • MET_wnddir: Wind direction (°)
  • MET_radlwd: Longwave radiation (W/m²)
  • MET_cldcvr: Cloud cover (fraction)
  • MET_prmslp: Mean sea level pressure (Pa)
  • MET_humrel: Relative humidity (%)
  • MET_prvapr: Vapour pressure (Pa)

To use this function, you will need to provide the latitude, longitude, and elevation of the site. Elevation is required to calculate the mean sea level pressure and cloud cover.

We can access the elevation data using the get_dem_value() function. This function uses the LINZ data service to obtain the elevation value for a given latitude and longitude using the national 8m digital elevation model (DEM) layer (ID: 51768).

This requires a LINZ API key which can be obtained by visiting the LINZ website and registering for an account. Then adding it to your R session using the add_linz_key() function.


elev <- get_dem_value(lat = lat, lon = lon)
elev
#> [1] 282

Now we can expand the meteorological data to include the derived variables.

met <- AEME::expand_met(met, lat = lat, lon = lon, elev = elev)
summary(met)
#>       Date              MET_radswd        MET_radlwd      MET_cldcvr    
#>  Min.   :2022-01-01   Min.   :  8.615   Min.   :186.7   Min.   :0.1580  
#>  1st Qu.:2022-07-02   1st Qu.: 93.090   1st Qu.:248.6   1st Qu.:0.5600  
#>  Median :2022-12-31   Median :150.059   Median :288.2   Median :0.7300  
#>  Mean   :2022-12-31   Mean   :164.618   Mean   :291.7   Mean   :0.7058  
#>  3rd Qu.:2023-07-01   3rd Qu.:229.137   3rd Qu.:332.2   3rd Qu.:0.8738  
#>  Max.   :2023-12-31   Max.   :386.774   Max.   :410.8   Max.   :1.0000  
#>    MET_tmpair       MET_airmax   MET_airmin   MET_dewmax   MET_dewmin
#>  Min.   : 4.725   Min.   :0    Min.   :0    Min.   :0    Min.   :0   
#>  1st Qu.: 9.901   1st Qu.:0    1st Qu.:0    1st Qu.:0    1st Qu.:0   
#>  Median :12.941   Median :0    Median :0    Median :0    Median :0   
#>  Mean   :12.899   Mean   :0    Mean   :0    Mean   :0    Mean   :0   
#>  3rd Qu.:15.961   3rd Qu.:0    3rd Qu.:0    3rd Qu.:0    3rd Qu.:0   
#>  Max.   :21.905   Max.   :0    Max.   :0    Max.   :0    Max.   :0   
#>    MET_humrel      MET_tmpdew       MET_prvapr       MET_prsttn   
#>  Min.   :50.18   Min.   :-2.106   Min.   : 5.242   Min.   :93756  
#>  1st Qu.:74.78   1st Qu.: 6.845   1st Qu.: 9.918   1st Qu.:96870  
#>  Median :82.01   Median : 9.723   Median :12.059   Median :97352  
#>  Mean   :81.77   Mean   : 9.755   Mean   :12.455   Mean   :97314  
#>  3rd Qu.:89.29   3rd Qu.:12.792   3rd Qu.:14.781   3rd Qu.:97879  
#>  Max.   :99.71   Max.   :21.368   Max.   :25.445   Max.   :99473  
#>    MET_prmslp       MET_wndspd      MET_wnddir        MET_wnduvu     
#>  Min.   : 96901   Min.   :0.079   Min.   :  0.909   Min.   :-5.5620  
#>  1st Qu.:100164   1st Qu.:1.517   1st Qu.: 77.121   1st Qu.:-1.3120  
#>  Median :100663   Median :2.375   Median :168.021   Median : 0.1795  
#>  Mean   :100637   Mean   :2.502   Mean   :173.417   Mean   : 0.2274  
#>  3rd Qu.:101219   3rd Qu.:3.388   3rd Qu.:261.986   3rd Qu.: 1.8213  
#>  Max.   :102904   Max.   :7.405   Max.   :358.476   Max.   : 5.7670  
#>    MET_wnduvv        MET_pprain         MET_ppsnow
#>  Min.   :-4.8230   Min.   :  0.0000   Min.   :0   
#>  1st Qu.:-1.0967   1st Qu.:  0.1585   1st Qu.:0   
#>  Median : 0.1890   Median :  1.6595   Median :0   
#>  Mean   : 0.0712   Mean   :  8.1192   Mean   :0   
#>  3rd Qu.: 1.2537   3rd Qu.: 10.5162   3rd Qu.:0   
#>  Max.   : 5.1660   Max.   :106.9180   Max.   :0

With these simple steps, you can download and derive meteorological data for your location of interest. This data can be used to drive hydrological and hydrodynamic models for your study area.

Head over to the AEME Getting Started vignette to learn more about how to use the meteorological data to drive hydrodynamic models.