library(aemetools)
library(sf)
library(terra)
library(tmap)
tmap_mode("view")
tmap_options(basemap.server = "OpenTopoMap")
Global
Download global point meteorological data
One of the most widely used meteorological datasets for hydrodynamic modelling is the ERA5-Land reanalysis dataset. This dataset has a spatial resolution of ~9 km and provides hourly meteorological data for the period 1950-present. It also includes a wide range of meteorological variables that are required to drive hydrological and hydrodynamic models.
However, there are known issues with the ERA5-Land dataset, such as the underestimation of precipitation and wind speed in some regions. Therefore, it is recommended to compare the ERA5-Land data with local observations before using it for hydrodynamic modelling.
Set up Copernicus (CDS) account and link with ecmwfr
package
Please see instructions on setting up a Copernicus (CDS) account and
linking it with the ecmwfr
package in the ecmwfr
vignette.
key <- "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
user <- "person@email.com"
# Add the key and user to the environment
Sys.setenv(CDS_KEY = key)
Sys.setenv(CDS_USER = user)
# Set the key for connecting to Copernicus Data Store (CDS)
ecmwfr::wf_set_key(key = Sys.getenv("CDS_KEY"),
user = Sys.getenv("CDS_USER"))
Download ERA5 data
Point timeseries data
The get_era5_isimip_point()
function can be used to
download ERA5 meteorological data for a specific point location. This
uses the ISIMIP3a dataset which is a subset of the ERA5 dataset and is
accessed via the ISIMIP
API. This function requires the latitude, longitude, years, and
variables to be specified. It can be used for any point location
globally. However, this dataset only covers 1900-2021.
Example: Download meterological data for 2021 for Lake Toba, Indonesia
However, it is very quick and easy to download meteorological data for a specific point location. We will choose the latitude and longitude of Lake Toba, Indonesia, and download the air temperature and precipitation for the year 2021.
lon <- 98.67591
lat <- 2.637047
years <- 2021
vars <- c("MET_tmpair", "MET_pprain")
met <- get_era5_isimip_point(lon, lat, years, vars)
#> INFO [2025-02-28 03:44:21] job submitted
#> INFO [2025-02-28 03:44:21] downloading
#> INFO [2025-02-28 03:44:22] extracting
summary(met)
#> Date tas pr
#> Min. :2021-01-01 Min. :19.08 Min. : 0.06125
#> 1st Qu.:2021-04-02 1st Qu.:21.29 1st Qu.: 1.88049
#> Median :2021-07-02 Median :21.79 Median : 4.86638
#> Mean :2021-07-02 Mean :21.77 Mean : 7.66636
#> 3rd Qu.:2021-10-01 3rd Qu.:22.30 3rd Qu.:10.38196
#> Max. :2021-12-31 Max. :23.67 Max. :68.75736
GRIB files
The download_era5_grib()
function can be used to
download ERA5 meteorological data from the Copernicus Data Store (CDS).
This function requires the latitude, longitude, variable, year, and
month to be specified. The data will be saved as a GRIB file in the
specified path.
Download shapefile for Lake Toba, Indonesia
We will download a shapefile for Lake Toba, Indonesia, and plot the
location using the osmdata
and tmap
packages.
For more details on using osmdata
, you can visit the osmdata website.
library(osmdata)
#> Data (c) OpenStreetMap contributors, ODbL 1.0. https://www.openstreetmap.org/copyright
osm_data <- opq(bbox = "Sumatra, Indonesia") |>
add_osm_feature(key = "name:en", value = "Lake Toba", value_exact = FALSE) |>
osmdata_sf()
# Extract lake polygon
toba <- osm_data$osm_multipolygons |>
st_make_valid()
toba
#> Simple feature collection with 1 feature and 16 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 98.51838 ymin: 2.318597 xmax: 99.15221 ymax: 2.903105
#> Geodetic CRS: WGS 84
#> osm_id name
#> 306034 306034 Danau Toba
#> description
#> 306034 Lake and supervolcano caldera, last erupting about 67,500 to 75,500 years ago.
#> ele image name:de name:en
#> 306034 900 https://photos.app.goo.gl/gM8jdz9oRP7zfybU7 Tobasee Lake Toba
#> name:fr name:hu name:ru name:tr natural type water
#> 306034 Lac Toba Toba-tó озеро Тоба Toba Gölü water multipolygon lake
#> wikidata wikipedia geometry
#> 306034 Q183360 id:Danau Toba POLYGON ((98.56084 2.769449...
Plot the location of Lake Toba.
tm_shape(toba) +
tm_fill(fill = "blue", fill_alpha = 0.5) +
tm_borders(col = "black")
Alternatively, you can manually input the latitude and longitude of the location you are interested in.
lat <- 2.637047
lon <- 98.67591
# View location
coords <- data.frame(lat = lat, lon = lon) |>
st_as_sf(coords = c("lon", "lat"), crs = 4326)
tm_shape(coords) +
tm_dots(fill = "red", size = 2)
Now we can download the ERA5 data for the 2m temperature for January
2024. We can use the download_era5_grib()
function to
download the data using the shapefile we downloaded earlier or the
latitude and longitude of the location.
year <- 2024
month <- 1
variable <- "2m_temperature"
path <- "data/test"
site <- "toba"
files <- download_era5_grib(shape = toba, year = year, month = month,
variable = variable, path = path, site = site,
user = user)
The function will return the path to the downloaded file.
files
#> [1] "data/test/reanalysis-era5-land_2m_temperature_hourly_2024_1_toba.grib"
Files are in GRIB (GRIdded Binary) format, which is a format commonly used in meteorology to store gridded data. You can read more about these files on the ECMWF website: GRIB.
The most important thing is not to be afraid of them. You can easily
read them using the terra::rast()
function.
r <- rast(files[1])
r
#> class : SpatRaster
#> dimensions : 8, 8, 744 (nrow, ncol, nlyr)
#> resolution : 0.1, 0.1 (x, y)
#> extent : 98.45, 99.25, 2.25, 3.05 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat Coordinate System imported from GRIB file
#> source : reanalysis-era5-land_2m_temperature_hourly_2024_1_toba.grib
#> names : SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], SFC (~e [C], ...
#> unit : C, C, C, C, C, C, ...
#> time : 2024-01-01 to 2024-01-31 23:00:00 UTC
Hmmmmmmm… Ok, maybe these files are not that easy to read/understand.
We can also plot them in leaflet using the terra::plet()
function.
plet(r)
As you can see it gives us a spatial grid of the 2m temperature for
the month of January 2024. However it is at a 1-hour temporal
resolution. We can use the read_grib_point()
function to
extract the timeseries data at a specific point location.
df <- read_grib_point(file = files, shape = toba)
head(df)
#> DateTime value units
#> 1 2024-01-01 00:00:00 293.0246 C
#> 2 2024-01-01 01:00:00 293.3111 C
#> 3 2024-01-01 02:00:00 293.9233 C
#> 4 2024-01-01 03:00:00 294.9492 C
#> 5 2024-01-01 04:00:00 296.1868 C
#> 6 2024-01-01 05:00:00 297.0911 C
#> variable short_name
#> 1 SFC (Ground or water surface); 2 metre temperature [C] 2T
#> 2 SFC (Ground or water surface); 2 metre temperature [C] 2T
#> 3 SFC (Ground or water surface); 2 metre temperature [C] 2T
#> 4 SFC (Ground or water surface); 2 metre temperature [C] 2T
#> 5 SFC (Ground or water surface); 2 metre temperature [C] 2T
#> 6 SFC (Ground or water surface); 2 metre temperature [C] 2T
New Zealand
Download NZ point meteorological data
Currently, there are ERA5-Land data (~9km grid spacing) archived for New Zealand (166.5/-46.6/178.6/-34.5) for the time period 1980-2023 with the main meteorological variables (air temperature, dewpoint temperature, wind u-vector at 10m, wind v-vector at 10m, total precipitation, snowfall, surface level pressure, downwelling shortwave radiation, downwelling longwave radiation) required to drive hydrological and hydrodynamic models. This can be easily downloaded using the example below.
First we will define our point location for New Zealand. We will use the latitude and longitude of Lake Rotorua, Bay of Plenty, New Zealand.
lon <- 176.2717
lat <- -38.079
Plot the location.
coords <- data.frame(lat = lat, lon = lon) |>
st_as_sf(coords = c("lon", "lat"), crs = 4326)
tm_shape(coords) +
tm_dots(fill = "red", size = 2)
Now we can download the ERA5 data for the air temperature and
precipitation for the years 2000-2001. We can use the
get_era5_land_point_nz()
function to download the data.
The function will return a dataframe with the daily meteorological data for the specified years.
vars <- c("MET_tmpair", "MET_pprain")
met <- get_era5_land_point_nz(lat = lat, lon = lon, years = 2000:2001,
vars = vars)
summary(met)
#> Date MET_tmpair MET_pprain
#> Min. :2000-01-01 Min. : 3.567 Min. : 0.0000
#> 1st Qu.:2000-07-01 1st Qu.: 9.178 1st Qu.: 0.1464
#> Median :2000-12-31 Median :12.053 Median : 1.5939
#> Mean :2000-12-31 Mean :11.967 Mean : 6.3207
#> 3rd Qu.:2001-07-01 3rd Qu.:14.835 3rd Qu.: 6.9353
#> Max. :2001-12-31 Max. :19.837 Max. :89.4112
We can plot the timeseries data using the ggplot2
package.
library(ggplot2)
library(tidyr)
#>
#> Attaching package: 'tidyr'
#> The following object is masked from 'package:terra':
#>
#> extract
met |>
pivot_longer(cols = c(MET_tmpair, MET_pprain)) |>
ggplot(aes(x = Date, y = value)) +
geom_line() +
facet_wrap(~name, scales = "free_y", ncol = 1) +
theme_bw()
By default, it will download all available variables. Currently
available variables are air temperature (MET_tmpair
), dew
point temperature (MET_tmpdew
), wind u-component
(MET_wnduvu
), wind v-component (MET_wnduvv
),
precipitation (MET_pprain
), snowfall
(MET_ppsnow
), surface level pressure
(MET_prsttn
) and shortwave radiation
(MET_radswd
).
To download all available variables for Lake Rotorua for the years 2022-2023, you can use the following code:
met <- get_era5_land_point_nz(lat = lat, lon = lon, years = 2022:2023)
summary(met)
#> Date MET_tmpair MET_tmpdew MET_wnduvu
#> Min. :2022-01-01 Min. : 4.725 Min. :-2.106 Min. :-5.5620
#> 1st Qu.:2022-07-02 1st Qu.: 9.901 1st Qu.: 6.845 1st Qu.:-1.3116
#> Median :2022-12-31 Median :12.940 Median : 9.723 Median : 0.1794
#> Mean :2022-12-31 Mean :12.899 Mean : 9.755 Mean : 0.2274
#> 3rd Qu.:2023-07-01 3rd Qu.:15.961 3rd Qu.:12.792 3rd Qu.: 1.8215
#> Max. :2023-12-31 Max. :21.905 Max. :21.368 Max. : 5.7673
#> MET_wnduvv MET_pprain MET_ppsnow MET_prsttn
#> Min. :-4.82260 Min. : 0.0000 Min. :0.000e+00 Min. :93756
#> 1st Qu.:-1.09642 1st Qu.: 0.1583 1st Qu.:0.000e+00 1st Qu.:96870
#> Median : 0.18915 Median : 1.6596 Median :0.000e+00 Median :97352
#> Mean : 0.07119 Mean : 8.1192 Mean :1.521e-16 Mean :97314
#> 3rd Qu.: 1.25388 3rd Qu.: 10.5166 3rd Qu.:0.000e+00 3rd Qu.:97879
#> Max. : 5.16590 Max. :106.9180 Max. :3.470e-15 Max. :99473
#> MET_radswd
#> Min. : 8.615
#> 1st Qu.: 93.090
#> Median :150.059
#> Mean :164.618
#> 3rd Qu.:229.137
#> Max. :386.774
Derive other meteorological variables
The downloaded ERA5 data can be converted to other meteorological
variables using the AEME::expand_met()
function. Which will
calculate the following variables:
-
MET_tmpdew
: Dew point temperature (°C) -
MET_wndspd
: Wind speed (m/s) -
MET_wnddir
: Wind direction (°) -
MET_radlwd
: Longwave radiation (W/m²) -
MET_cldcvr
: Cloud cover (fraction) -
MET_prmslp
: Mean sea level pressure (Pa) -
MET_humrel
: Relative humidity (%) -
MET_prvapr
: Vapour pressure (Pa)
To use this function, you will need to provide the latitude, longitude, and elevation of the site. Elevation is required to calculate the mean sea level pressure and cloud cover.
We can access the elevation data using the
get_dem_value()
function. This function uses the LINZ data
service to obtain the elevation value for a given latitude and longitude
using the national 8m digital elevation model (DEM) layer (ID:
51768).
This requires a LINZ API key which can be obtained by visiting the LINZ
website and registering for an account. Then adding it to your R
session using the add_linz_key()
function.
elev <- get_dem_value(lat = lat, lon = lon)
elev
#> [1] 282
Now we can expand the meteorological data to include the derived variables.
met <- AEME::expand_met(met, lat = lat, lon = lon, elev = elev)
summary(met)
#> Date MET_radswd MET_radlwd MET_cldcvr
#> Min. :2022-01-01 Min. : 8.615 Min. :186.7 Min. :0.1580
#> 1st Qu.:2022-07-02 1st Qu.: 93.090 1st Qu.:248.6 1st Qu.:0.5600
#> Median :2022-12-31 Median :150.059 Median :288.2 Median :0.7300
#> Mean :2022-12-31 Mean :164.618 Mean :291.7 Mean :0.7058
#> 3rd Qu.:2023-07-01 3rd Qu.:229.137 3rd Qu.:332.2 3rd Qu.:0.8738
#> Max. :2023-12-31 Max. :386.774 Max. :410.8 Max. :1.0000
#> MET_tmpair MET_airmax MET_airmin MET_dewmax MET_dewmin
#> Min. : 4.725 Min. :0 Min. :0 Min. :0 Min. :0
#> 1st Qu.: 9.901 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
#> Median :12.941 Median :0 Median :0 Median :0 Median :0
#> Mean :12.899 Mean :0 Mean :0 Mean :0 Mean :0
#> 3rd Qu.:15.961 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
#> Max. :21.905 Max. :0 Max. :0 Max. :0 Max. :0
#> MET_humrel MET_tmpdew MET_prvapr MET_prsttn
#> Min. :50.18 Min. :-2.106 Min. : 5.242 Min. :93756
#> 1st Qu.:74.78 1st Qu.: 6.845 1st Qu.: 9.918 1st Qu.:96870
#> Median :82.01 Median : 9.723 Median :12.059 Median :97352
#> Mean :81.77 Mean : 9.755 Mean :12.455 Mean :97314
#> 3rd Qu.:89.29 3rd Qu.:12.792 3rd Qu.:14.781 3rd Qu.:97879
#> Max. :99.71 Max. :21.368 Max. :25.445 Max. :99473
#> MET_prmslp MET_wndspd MET_wnddir MET_wnduvu
#> Min. : 96901 Min. :0.079 Min. : 0.909 Min. :-5.5620
#> 1st Qu.:100164 1st Qu.:1.517 1st Qu.: 77.121 1st Qu.:-1.3120
#> Median :100663 Median :2.375 Median :168.021 Median : 0.1795
#> Mean :100637 Mean :2.502 Mean :173.417 Mean : 0.2274
#> 3rd Qu.:101219 3rd Qu.:3.388 3rd Qu.:261.986 3rd Qu.: 1.8213
#> Max. :102904 Max. :7.405 Max. :358.476 Max. : 5.7670
#> MET_wnduvv MET_pprain MET_ppsnow
#> Min. :-4.8230 Min. : 0.0000 Min. :0
#> 1st Qu.:-1.0967 1st Qu.: 0.1585 1st Qu.:0
#> Median : 0.1890 Median : 1.6595 Median :0
#> Mean : 0.0712 Mean : 8.1192 Mean :0
#> 3rd Qu.: 1.2537 3rd Qu.: 10.5162 3rd Qu.:0
#> Max. : 5.1660 Max. :106.9180 Max. :0
With these simple steps, you can download and derive meteorological data for your location of interest. This data can be used to drive hydrological and hydrodynamic models for your study area.
Head over to the AEME Getting Started vignette to learn more about how to use the meteorological data to drive hydrodynamic models.